
Braiding Techniques to 
Improve Security and Scaling
https://github.com/Taek42/jute



About Me

+ David Vorick
+ Bitcoin since 2011
+ Full-time blockchain engineer since 2014

+ CEO of Nebulous Inc.
+ Lead developer for Sia - functional decentralized cloud storage

+ https://sia.tech



What is Braiding?

+ Blocks can have multiple parents
+ Consensus achieved by a 

combination of sorting and 
deleting

+ ‘Inclusive’ braiding means 
conflicting blocks are allowed to 
coexist



Why Braid? / Shortcomings with Satoshi Consensus

+ Low latency, high hashrate have more profits due to lower orphan rates
+ Large miners can engage in selfish mining. 
+ Network is idle for 10 minutes at a time, then busy for a few seconds.
+ Confirmations can take more than 30 minutes.
+ Only 4,000 payouts per month, solo-mining impractical without millions of 

dollars. Mining pools offer a solution, but are a centralization pressure.



Non Braiding 
Solutions

+ Can reduce the symptoms
+ Can’t eliminate the problems 

entirely
+ Often fail during adversarial 

conditions
+ Nothing addresses selfish 

mining

+ The Relay Network, FIBRE
+ IBLT
+ Weak Blocks
+ Compact Blocks
+ Thin Blocks
+ P2Pool
+ (other solutions as well)



Existing Braid 
Work

+ Often Complex
+ Often Confused Security 

Models
+ Often vulnerable to strategic 

mining
+ Often easy to cause deep 

reorgs (need < 51% hashrate)

+ Bob McElrath’s Braids 
https://github.com/mcelrath/braidcoin

+ GHOST 
https://eprint.iacr.org/2013/881.pdf

+ Inclusive Blockchain Protocols 
http://fc15.ifca.ai/preproceedings/paper_101.pdf

(and more)

https://github.com/mcelrath/braidcoin
https://github.com/mcelrath/braidcoin
https://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2013/881.pdf
http://fc15.ifca.ai/preproceedings/paper_101.pdf
http://fc15.ifca.ai/preproceedings/paper_101.pdf


Jute: A New Approach to Braids

+ Easy to understand
+ More thorough security model
+ Reasonable computation + engineering demands
+ Working Code

+ ~6 second block times
+ ~50kb block sizes
+ No orphans, no selfish mining
+ Need 50+ confirmations for security - 5 minutes (+/- a minute)
+ ~400,000 blocks per month (good for solo mining)



Graph Topology for Bitcoin + Jute

+ Bitcoin has a 10 minute block time. At any given point in time, most/all nodes 
will have seen all blocks that have been found. Sometimes 1 or 2 blocks have 
been found but have not yet propagated to all nodes.

+ In Jute, most of the time there is at least one block which has been found, yet 
hasn’t propagated. Sometimes, 6+ blocks will have been found but not yet 
propagated.

+ Low latency miners in Jute are far more likely to have seen most/all recent 
blocks than high latency miners. A low latency may on average know about 
every block, while a high latency miner on average may not know about the 
2-4 most recent blocks.



Bitcoin Jute



Requirements of a Competitor to Satoshi Consensus

+ Immutable history. Once a block is ‘confirmed’, self-interested miners will 
continue confirming that block such that it gets harder and harder to rewrite 
history as deep as that block.

+ Miners with less than 51% hashrate should not have any incentives to be break 
protocol - any alternative behavior should negatively affect profits.

+ Miners with less than 51% hashrate should not be able to censor transactions 
from the network, nor should they be able to rewrite confirmed history.

+ SPV verification needs to be supported
+ Miners should not gain advantages by incrementally increasing their 

hashpower - there should be minimal centralization pressure
+ Miners should not gain advantages through strategic behavior or improved 

network connectivity.



Surface Area Included in Requirements

+ Denial-of-Service attacks - processing the chain, propagating blocks, 
performing reorganizations all need to be DoS free. Worst-case must be 
tolerated by low-power nodes.

+ Transaction fee manipulations - users can create conflicting transactions, 
miners can mine conflicting transactions. With low enough block times, low 
latency miners can steal fees from high latency miners (be re-mining and 
propagating)

+ Double spend attempts - how hard is it for a high hashrate miner to execute a 
double spend? How expensive is it to fail?



Managing the Chaos of Jute

+ As much as possible, Jute wants to be inclusive, is it is fair to high latency, low 
hashrate miners. All blocks, even those with conflicting transactions are 
included. 

+ Invalid transactions are thrown out while processing the chain, however the 
blocks that included these transactions are kept, and the other transactions in 
the block are also kept.



Foundation for an Immutable Sorting

+ Consensus in jute is built by picking out a main chain from the block graph, 
and then iteratively merging all ancestors of each node in the main chain.

+ The main chain is determined by votes. Votes are applied toward edges. When 
extending the graph, you start from the genesis block and iteratively find the 
child whose edge has the most votes. Then you add a vote to that edge. 
Eventually, the new block will be reached, at which point voting is complete.

+ Two things skipped - tie breaks, and a censorship protection. We will come 
back to these.



Simple Example



Tie Breaks

Sometimes, multiple children of a block in the main chain will have the same 
number of votes. To choose between them if there’s a tie:

1. Favor the one with the most ancestors

2. If still tied, use hash of merging block as RNG seed, pick one randomly



Nested Diamond Example



No Collapse Example



Reorganizing the Chain

+ To pick a new main chain, you need to upgrade an edge to having more 
moves

+ Every block that is produced confirms the existing main chain, these edges are 
continuously getting stronger, while no votes are going to the competing 
edges at all

+ An attacker will need to add strength to their alternate main chain faster than 
the rest of the miners are strengthening the main chain

+ Need >51% hashrate. The main chain is protected with the same strength as 
Bitcoin. *almost



*almost ?

+ The network cannot confirm blocks in the main chain if those blocks have not 
yet propagated

+ Each node will have a different view of the network, they may see different 
main chains

+ Convergence depends on a majority vote for a particular edge propagating to 
all supporters of its competitors before those competitors can get extra votes

+ When block time is too far below the network propagation time, convergence 
is not guaranteed, and can even be actively disrupted by a high hashrate 
attacker.

+ Unclear if this is a solvable problem. Solutions desired!



Ensuring Convergence

+ This is the primary reason that the block time is set to 6 seconds, and not 
lower.

+ The network propagation time for 50kb blocks is estimated to be below 12 
seconds for the majority of hashrate.

+ Blocks are found at a highly variant rate, if there are two competing main 
chains, one should win by luck in under a minute

+ This is handwavy, not properly tested. Maybe 6 seconds is too ambitious.



Sorting Off-Main-Chain Blocks

+ No parent block should be sorted after its child
+ History should not change unless the main chain changes
+ For each block in the main chain (starting from Genesis), first include all 

ancestors that have not already been included. Then include the block, and 
move to the next block in the main chain.

+ To guarantee that history cannot change without changing the main chain, sort 
parents by viewing the graph as the child block saw the graph.

+ Sort by finding a ‘sub’ main-chain in the off-chain blocks



Sorting Example
0-2-1-4-5-7



Code

https://github.com/Taek42/jute

+ The ‘consensus-poc’ folder contains code which can assemble graphs, add the 
votes according to the rules described, and then sort blocks according to the 
rules described

+ Check out the README
+ ‘NewGraph()’ to make a graph using the rules described so far
+ ‘NewLowBlockTimeGraph()’ to make a graph using the extra rule that I haven’t 

described yet (irrelevant for most graphs, irrelevant when block time is high)

https://github.com/Taek42/jute
https://github.com/Taek42/jute


Revisiting Problems (solutions in upcoming slides)

+ Transaction fees work entirely differently. Optimal mining strategies change, 
potential attack vectors change, it’s a new ecosystem. All (known) potential 
problems have solutions, but it’s a big change from mining on a Satoshi 
consensus blockchain.

+ If you allow blocks to be included from infinitely back, a medium hashrate 
attacker can spend months creating blocks and then dump them all on the 
network at the same time, a DoS attack.

+ No orphans and no high-latency penalties means that double spend attempts 
are essentially free. Need additional protection.



Non-Adversarial Transaction Fees
+ Low latency miners are going to be able to usually get their blocks into the 

chain ahead of high latency miners, which means they get preference.
+ Low latency miners have further advantage because they will see sooner 

which fees have been mined in a block, and know faster not to mine those 
fees.

+ It’s bad for everyone if multiple blocks are mined with high transaction overlap. 
At least one of the miners loses out on fees, effective network throughput is 
lower.

+ Miners therefore want to mine probabilistically, adding transactions randomly 
weighted by how big the fee is

+ Most effective when there are a lot of potential transactions with similar fees. 
Deep mempool also limits the advantages of low latency miners.



Incentivizing a Deep Mempool

+ Make it expensive to have blocks with more transactions in them. Require 
miners to burn coins for every transaction they add, increasing as blocks grow.

+ E.g., need to burn 1 satoshis per byte for first kilobyte, 2 satoshis per byte for 
second kilobyte, etc. (blocks are 50kb in jute, so max burn for a whole block is 
25 satoshis per byte)

+ If there are not enough transactions to fill blocks all the way up, transaction 
fees will be lower, low enough that miners will prefer to burn less coins and 
spread the transactions out, effectively making the transaction pool deeper.



Redistributing Fees is not Byzantine Fault Tolerant

+ Any solution that redistributes fees, such as fee splitting or a mining fee pool, is 
a bad idea.

+ This is because it means the effective fee on a transaction goes down, as that 
fee is at risk of being redistributed

+ Transaction creators then have incentives to use alternate mechanisms to pay 
miners for mining transactions, such as making a special hidden output or 
doing other backroom / out-of-band deals

+ Backroom deals are more accessible to people with better social connections, 
and are therefore a centralization pressure.

+ Fees must be paid in full to the miner than mined the transaction, if and only if 
that transaction is determined to be valid by consensus. 



Adversarial Transaction Fees

+ Miners can intentionally launch a bunch of double spends in an attempt to hurt 
their competitors. Low latency miners will be hurt less than this by high latency 
miners (as they know faster which transactions to not mine), which is a form of 
selfish mining

+ With a low enough block time (6 seconds probably not low enough), 
adversaries can re-mine blocks from high-latency miners, stealing all the fees. 
When you see a block from a slow miner, you re-mine it, giving all the fees to 
yourself, and then you propagate it fast enough that it beats the slow miner.



Fixing the Adversarial Cases

+ To not be a victim to potential double spends, wait a random number of 
seconds (0 - 12 seconds) before mining a transaction. If there is a double 
spend, it’ll propagate and you’ll know to not mine it.

+ Fee re-mining can be resolved by randomly selecting between conflicting 
transactions during the consensus phase. If conflicting transactions / 
transaction-trees (due to dependencies) appear within 20 blocks of eachother, 
instead of honoring the first one selected between them randomly weighted 
by the size of the transaction-tree in bytes. This means the first 20 
confirmations are entirely useless, but also means that low-latency 
high-hashrate miners lose the ability to do fee re-mining. Not really necessary 
with 6 second block times, absolutely necessary at 1 second block times.



Addressing DoS Blocks

+ If we start to ignore blocks, honest miners become vulnerable to being 
orphaned. If we don’t have any limits on mining, there are huge DoS vectors.

+ We will limit blocks - blocks must have a relative height that is within 200 of 
their actual height (gap height of less than 200) to be considered for the chain. 
Otherwise, just the header is used, and the work added / votes added is 
ignored.

+ Children of ignored blocks can still be included in the chain, which is why we 
need to preserve the header information - to verify the relative height of the 
children.

+ (pedantic note - ‘height’ used for convenience. Full limit takes into account 
amount of work instead of raw count of descendants)



How to Cause Orphans, Given DoS Protection

+ Attacker can cause orphans by causing a reorg 200+ deep.
+ Requires that the attacker refuse to include other blocks, hurting the attacker’s 

relative height and increasing the attacker’s own risk of being orphaned.
+ Requires that the attacker find 200 blocks faster than the rest of the network is 

able to find 200 blocks. If less than 45% hashrate, essentially impractical. 
Overwhelmingly impractical at 35% hashrate.

+ If the attacker finds 210 blocks by the time the rest of the network finds 200 
blocks, the attacker can cause 10 honest blocks to be orphaned.

+ Strategic mining in Jute is very ineffective. Need > 40% hashrate, and you can 
affect honest profits by < 0.1%.



How to DoS, Given DoS Protections

+ Mine and withhold as many blocks as possible, and when the relative height of 
your earliest withheld block approaches 200, dump all blocks on the network 
all at once, causing congestion.

+ 40% hashrate attacker can dump up to 133 blocks at a time, sometimes 150 
blocks with enough luck.

+ 25% hashrate attacker can dump up to 66 blocks at a time.
+ Transaction fee preference on these blocks will be low

+ This will cause congestion for a few minutes, potentially make double 
spending easier. Easily detectable, and countered by doubling the 
confirmation time during the congestion.



Handling Double Spends

+ Double spending requires exponential luck in the number of confirmations.
+ Attempting to double spend 3 confirmations is trivial, costless. Attempting to 

brute force an 8-bit private key is also trivial, costless.
+ Jute has a block time of 6 seconds. After 5 minutes, the main chain will have 

~40-50 confirmations. After 20 minutes, ~190-200 confirmations. And so on.
+ Low latency miners have an advantage, as they can propagate their double 

spend chains faster than the honest chain.



Double Spend Simulator

I created a simulation to estimate the probability that an attacker can execute a 
double spend. Simulation has configurable variables such as attacker hashrate, 
block time, and network propagation time.

‘doublespendsim’ folder of https://github.com/Taek42/jute

+ For 33% hashrate attacker, wait for 50 confirmations (5 minutes)
+ For 40% hashrate attacker, wait for 150 confirmations (15 minutes)
+ For 45% hashrate attacker, wait for 500 confirmations (50 minutes)
+ For high value / high risk transactions, double the confirmations requirement
+ Check the README, it’s got some cool stuff

https://github.com/Taek42/jute


Incentives Against Double Spends

+ What happens if a bunch of miners are attempting double spends?
+ Their blocks will not be in the main chain.
+ This means lower preference on ordering, which means less likely to get 

transaction fees.

+ If using fee modifications, double spends out to 20 confirmations are basically 
entirely free, and you should wait 20 blocks in addition to the numbers listed 
previously



Adding SPV

+ Transactions will be selectively thrown from blocks, meaning an SPV 
commitment to the transactions in your own block is not helpful - you need to 
know which transactions are being thrown away

+ Instead of committing to just one block, commit to the valid transactions in the 
most recent 200 blocks (the maximum gap height). Include the block 
containing each transaction in the commitment.

+ SPV nodes can tell where the reorgs are, and thus know which commitments 
are potentially invalid.

+ SPV nodes have the flexibility of displaying potential transactions to the user 
and the number of confirmations on those transactions.



Low Block Time Rule

+ Only relevant if a minority attacker can consistently mine and propagate 
multiple blocks per network propagation cycle - meaning block time needs to 
be very low, and attacker needs to have a significant network advantage

+ Much more relevant with insanely low block times, like 100 milliseconds
+ Low block time rule not enough to drop the block rate that low safely, because 

the network-convergence problem is still unsolved.
+ Rule: If a merging block is introducing blocks to the chain at a higher rate than 

the main chain is, the edge selected by that block gets extra votes. ‘Rate’ is 
determined by number of ancestors visible between main chain and recent 
common ancestor, vs number of ancestors not visible between main chain 
recent common ancestor. One extra vote per extra block.

+ Precise definition can be found in the code.



Graph Without vs. With Low Block Time Rule



Reiteration of Weaknesses

+ Bitcoin’s strong counter-incentives against double spends get weakened, but 
double spending is made to require much more luck through waiting for 
dozens of confirmations.

+ Network is made vulnerable to a limited amount of flooding by an adversary. 
Flooding is insignificant enough that a permanently ongoing attack should not 
be disruptive, even from a 49% hashrate miner.

+ Attackers can stall consensus if they can reliably mine multiple blocks per 
network propagation period. 6 second block time prevents this.

+ New, largely untested. Maybe some more attack vectors exist.



Reiteration of Advantages

+ No more selfish mining attacks
+ No more orphan blocks for high latency miners
+ More frequent blocks means more pipelining + parallelism, more scalability.
+ Reduced emphasis on latency means optimizations can focus instead on 

throughput.
+ Lower block times mean more practical/accessible solo-mining.
+ Safe number of confirmations in only a few minutes, with low variance. 

Especially if the largest potential attacker has less than 40% hashrate.



Future Work

+ If we can solve the consensus stalling attack, we can update the protocol to 
support block times as low as 250 milliseconds, and we can get even stronger 
scaling benefits, stronger defense against double spends, and you will be able 
to solo-mine profitably from your bedroom.

+ More research / investigation needs to be done into potential attack vectors
+ Code currently only supports hand-crafted chains, also is grossly unoptimized. 

We could use an implementation that could be thrown into a testnet of real 
nodes.

+ Double spend simulator may be inaccurate.



Thanks


